MiniBooNE

Steve Brice Fermilab

- Oscillation Analysis
- Issues of the Past Year
 - Normalization
 - Optical Model
 - π^0 MisIDs
- Summary
- Future

MiniBooNE Goal

- Search for v_e appearance in a v_μ beam at the ~0.3% level
 - L=540 m ~10x LSND
 - E~500 MeV ~10x LSND

Particle ID

- To achieve good sensitivity the Particle ID must
 - Eliminate ~99.9% of all v_{μ} CC interactions
 - Eliminate ~99% of all NC π^0 producing interactions
 - Maintain good (\sim 30-60%) efficiency for v_e interactions
- It achieves these goals
- · Exploring parallel, complementary approaches
 - "Simple" cuts: easy to understand
 - Boosted decision trees: maximize sensitivity

Backgrounds

- Makeup of the backgrounds is different for the two particle ID approaches
 - Different balance between intrinsic v_e and misIDed v_μ
 - Important check that backgrounds are understood
- · Backgrounds are determined from our own data using
 - v_{μ} CCQE events for intrinsic v_{e} from μ^{+}
 - Single π^0 events for π^0 misID
 - High energy v_e events for intrinsic v_e from K^+

Full data sample ~5.3 x 10²⁰ POT

Osc ve

- Example oscillation signal
 - $\Delta m^2 = 1 \text{ eV}^2$
 - SIN²2 θ = 0.004
- Fit for excess as a function of reconstructed v_e energy

Full data sample ~5.3 x 10²⁰ POT

MisID ν_{μ}

- · of these.....
- ~83% π⁰
 - Only ~1% of π^0 s are misIDed
 - Determined by clean π^0 measurement
- \sim 7% $\Delta \gamma$ decay
 - Use clean π^0 measurement to estimate Δ production
- ~10% other
 - Use v_{μ} CCQE rate to normalize and MC for shape

Full data sample ~5.3 x 10²⁰ POT

 v_e from μ^+ $p+Be \longrightarrow \pi^+ \qquad v_\mu \qquad v_e$ $v_\mu = v_\mu \qquad v_\mu = v_\mu \qquad v_\mu = v_\mu \qquad v_\mu = v_\mu = v_\mu \qquad v_\mu = v_\mu$

- Measured with v_{μ} CCQE sample
 - Same parent π^+ kinematics
- Most important background
- Very highly constrained (a few percent)

Full data sample ~5.3 x 10²⁰ POT

v_e from K⁺

- Use High energy v_e and v_u to normalize
- Use kaon production data for shape
- Need to subtract off misIDs

Full data sample ~5.3 x 10²⁰ POT

Issues Of the Past Year

- Most of the analysis effort over the last year has gone into
 - Normalization
 - Optical Model
 - π^0 MisIDs
- Each is a significant hurdle that has been overcome

Issues of the Past Year: Normalization

- The MiniBooNE Run Plan reported we were seeing ~1.5 times as many events as the Monte Carlo predicted
 - For an inclusive v event sample
- This normalization difference is now ~1.2
- Major changes in rate prediction since Run Plan (not complete list) ...

```
 \begin{array}{ll} -3.5\% & \text{from better $\nu$ cross-section modeling} \\ +17.5\% & \text{from better modeling of incoming proton beam} \\ +5.2\% & \text{from $CCQE$ cross-section tuning $(M_A$ extraction)} \\ -6.0\% & \text{from better modeling of secondary beam interactions} \\ +16.2\% & \text{from $HARP$ $\pi^+$ measurement + horn current + better modeling of primary proton interactions} \\ \end{array}
```

 After a huge amount of cross-checking the agreement between data and MC v rates is now far less of an issue

Issues of the Past Year: Optical Model

- Two Key features of MiniBooNE
 - Trying to do very precise particle ID to identify a possible ~0.3% signal
 - Several calibration sources, but none with the perfect properties (e.g. no 1 GeV electron gun)
- The approach must therefore be...
 - Use the available calibration sources (Michel electrons, laser, etc)
 - Have a very well tuned MC to extrapolate from what the calibration sources look like to what the signal and background look like
- Therefore...
 - Need an "optical model" that matches data very well
 - Optical Model = model for how light is created, propagated, and detected in MiniBooNF

Issues of the Past Year: Optical Model

 Stepwise approach to tuning the optical model

Issues of the Past Year: Optical Model

- · Many variables are potentially useful in analyses
- Optical Model improvement measured by data/MC agreement in these variables
- Huge gains in data/MC agreement

Chisq / NDF: 318 PID Inputs

Issues of the Past Year: π^0 MisIDs

- About 83% of all MisID background comes from single π^0 events
- Use cleanly identified π^0 s to measure the π^0 rate as a function of π^0 momentum

Issues of the Past Year: π^0 MisIDs

New π^0 fitter can make π^0 yield measurements up to the ~1.5 GeV level needed to get at the v_e s from K⁺

This is an ongoing analysis – not yet complete

 π^0 Mass: Comparison Old Algorithm to New

Summary

- Over the past year the major hurdles have been crossed
 - Much more accurate prediction of rate data/MC ~1.2
 - Optical Model probably now good enough (more checks needed)
 - Analysis for π^0 misID measurement largely in place
- · Still a lot of work to do but the way forward is clear
- On track for a result as soon as this summer

The Future

- · Ran in anti-neutrino mode January 2006 to shutdown
- Will continue in anti-neutrino mode after shutdown
 - First ever anti-neutrino measurements in this energy region
- SciBooNE experiment, at a near location in the beamline, will start in late 2006 (see SciBooNE talk)
- Possibility to build additional detectors closer or farther away (BooNE)
 - MiniBooNE clone or new technology (e.g. LAr)
 - MiniBooNE result will guide location
 - ~2km detector for low ∆m²
 - \sim 0.2km detector for high Δ m²

Backups

Neutrino Candidates

- DAQ triggered on beam from Booster
- v pulse through detector lasts 1.6 μs
- By requiring tank activity and no veto activity the non-neutrino backgrounds become negligible

proton->Be collisions at 8.9 GeV/c

piplus cross section with full statistical plus systematic errors shown (except the 4% normalization error)

Momentum and angular distribution of pions decaying to a neutrino that passes through the MB detector.

Low Q2 & MiniBooNE QE Model

- perform shape fit to MiniBooNE QE dN/dQ² (~60,000 QE events after cuts)
- fit for:
 - Fermi Gas model pars (E_B,p_F)
 - axial mass, M_A
 - and background fraction, B_F
- best shape fit yields "effective parameters":
 - M_A=1.24 GeV
 - $-E_B = 34 \text{ MeV}$
 - $-p_F = 246 \text{ MeV}$

 $-B_F = 0.7$ DOE Review 17 May 2006

(J. Monroe)

Past v Data

- not clear that past QE neutrino data necessarily rules out a larger value for M_A
- example: BNL bubble chamber data and dσ/dQ² predictions with different M_A assumptions

Checking Particle ID with NuMI Events

• Because of the off-axis angle, the beam at MiniBooNE from NuMI is significantly enhanced in $v_e s$ from K^+

· Enables a powerful check on the Particle ID

DOE Review 17 May 2006

